Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 116, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448406

RESUMO

Serine protease inhibitor clade E member 1 (SERPINE1) inhibits extracellular matrix proteolysis and cell detachment. However, SERPINE1 expression also promotes tumor progression and plays a crucial role in metastasis. Here, we solve this apparent paradox and report that Serpine1 mRNA per se, independent of its protein-coding function, confers mesenchymal properties to the cell, promoting migration, invasiveness, and resistance to anoikis and increasing glycolytic activity by sequestering miRNAs. Expression of Serpine1 mRNA upregulates the expression of the TRA2B splicing factor without affecting its mRNA levels. Through transcriptional profiling, we found that Serpine1 mRNA expression downregulates through TRA2B the expression of genes involved in the immune response. Analysis of human colon tumor samples showed an inverse correlation between SERPINE1 mRNA expression and CD8+ T cell infiltration, unveiling the potential value of SERPINE1 mRNA as a promising therapeutic target for colon tumors.

2.
Cell Metab ; 35(10): 1814-1829.e6, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37699398

RESUMO

Selectively ablating damaged cells is an evolving therapeutic approach for age-related disease. Current methods for genome-wide screens to identify genes whose deletion might promote the death of damaged or senescent cells are generally underpowered because of the short timescales of cell death as well as the difficulty of scaling non-dividing cells. Here, we establish "Death-seq," a positive-selection CRISPR screen optimized to identify enhancers and mechanisms of cell death. Our screens identified synergistic enhancers of cell death induced by the known senolytic ABT-263. The screen also identified inducers of cell death and senescent cell clearance in models of age-related diseases by a related compound, ABT-199, which alone is not senolytic but exhibits less toxicity than ABT-263. Death-seq enables the systematic screening of cell death pathways to uncover molecular mechanisms of regulated cell death subroutines and identifies drug targets for the treatment of diverse pathological states such as senescence, cancer, and fibrosis.


Assuntos
Senescência Celular , Senoterapia , Senescência Celular/genética , Morte Celular , Compostos de Anilina
3.
Cell Stem Cell ; 30(5): 689-705.e4, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37080206

RESUMO

Exercise has the ability to rejuvenate stem cells and improve tissue regeneration in aging animals. However, the cellular and molecular changes elicited by exercise have not been systematically studied across a broad range of cell types in stem cell compartments. We subjected young and old mice to aerobic exercise and generated a single-cell transcriptomic atlas of muscle, neural, and hematopoietic stem cells with their niche cells and progeny, complemented by whole transcriptome analysis of single myofibers. We found that exercise ameliorated the upregulation of a number of inflammatory pathways associated with old age and restored aspects of intercellular communication mediated by immune cells within these stem cell compartments. Exercise has a profound impact on the composition and transcriptomic landscape of circulating and tissue-resident immune cells. Our study provides a comprehensive view of the coordinated responses of multiple aged stem cells and niche cells to exercise at the transcriptomic level.


Assuntos
Envelhecimento , Condicionamento Físico Animal , Camundongos , Animais , Envelhecimento/fisiologia , Células-Tronco Hematopoéticas , Transcriptoma/genética , Perfilação da Expressão Gênica , Músculo Esquelético , Nicho de Células-Tronco , Mamíferos
4.
Stem Cell Reports ; 17(1): 82-95, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021050

RESUMO

Adult skeletal muscle stem cells (MuSCs) are important for muscle regeneration and constitute a potential source of cell therapy. However, upon isolation, MuSCs rapidly exit quiescence and lose transplantation potency. Maintenance of the quiescent state in vitro preserves MuSC transplantation efficiency and provides an opportunity to study the biology of quiescence. Here we show that Tubastatin A (TubA), an Hdac6 inhibitor, prevents primary cilium resorption, maintains quiescence, and enhances MuSC survival ex vivo. Phenotypic characterization and transcriptomic analysis of TubA-treated cells revealed that TubA maintains most of the biological features and molecular signatures of quiescence. Furthermore, TubA-treated MuSCs showed improved engraftment ability upon transplantation. TubA also induced a return to quiescence and improved engraftment of cycling MuSCs, revealing a potentially expanded application for MuSC therapeutics. Altogether, these studies demonstrate the ability of TubA to maintain MuSC quiescence ex vivo and to enhance the therapeutic potential of MuSCs and their progeny.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Músculo Esquelético/citologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Animais , Ciclo Celular , Diferenciação Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Transplante de Células-Tronco , Transcriptoma
5.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493660

RESUMO

Skeletal muscle possesses remarkable regenerative ability because of the resident muscle stem cells (MuSCs). A prominent feature of quiescent MuSCs is a high content of heterochromatin. However, little is known about the mechanisms by which heterochromatin is maintained in MuSCs. By comparing gene-expression profiles from quiescent and activated MuSCs, we found that the mammalian Hairless (Hr) gene is expressed in quiescent MuSCs and rapidly down-regulated upon MuSC activation. Using a mouse model in which Hr can be specifically ablated in MuSCs, we demonstrate that Hr expression is critical for MuSC function and muscle regeneration. In MuSCs, loss of Hr results in reduced trimethylated Histone 3 Lysine 9 (H3K9me3) levels, reduced heterochromatin, increased susceptibility to genotoxic stress, and the accumulation of DNA damage. Deletion of Hr leads to an acceleration of the age-related decline in MuSC numbers. We have also demonstrated that despite the fact that Hr is homologous to a family of histone demethylases and binds to di- and trimethylated H3K9, the expression of Hr does not lead to H3K9 demethylation. In contrast, we show that the expression of Hr leads to the inhibition of the H3K9 demethylase Jmjd1a and an increase in H3K9 methylation. Taking these data together, our study has established that Hr is a H3K9 demethylase antagonist specifically expressed in quiescent MuSCs.


Assuntos
Inativação Gênica , Heterocromatina , Histona Desmetilases/antagonistas & inibidores , Músculo Esquelético/fisiologia , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Animais , Histonas/genética , Histonas/metabolismo , Metilação , Camundongos , Camundongos Pelados , Músculo Esquelético/citologia , Células-Tronco/citologia , Fatores de Transcrição/genética
6.
Nat Metab ; 2(4): 307-317, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32601609

RESUMO

Aging impairs tissue repair. This is pronounced in skeletal muscle, whose regeneration by muscle stem cells (MuSCs) is robust in young adult animals but inefficient in older organisms. Despite this functional decline, old MuSCs are amenable to rejuvenation through strategies that improve the systemic milieu, such as heterochronic parabiosis. One such strategy, exercise, has long been appreciated for its benefits on healthspan, but its effects on aged stem cell function in the context of tissue regeneration are incompletely understood. Here we show that exercise in the form of voluntary wheel running accelerates muscle repair in old animals and improves old MuSC function. Through transcriptional profiling and genetic studies, we discovered that the restoration of old MuSC activation ability hinges on restoration of Cyclin D1, whose expression declines with age in MuSCs. Pharmacologic studies revealed that Cyclin D1 maintains MuSC activation capacity by repressing TGFß signaling. Taken together, these studies demonstrate that voluntary exercise is a practicable intervention for old MuSC rejuvenation. Furthermore, this work highlights the distinct role of Cyclin D1 in stem cell quiescence.


Assuntos
Ciclina D1/metabolismo , Músculo Esquelético/citologia , Condicionamento Físico Animal , Células-Tronco/citologia , Animais , Separação Celular , Transplante de Células , Citometria de Fluxo , Camundongos , Músculo Esquelético/metabolismo , Células-Tronco/metabolismo
7.
Cell Death Differ ; 24(5): 785-797, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28186499

RESUMO

Long non-coding RNAs (lncRNAs) are a class of regulatory genes that participate in a wide range of biological processes, including proliferation, differentiation and development, as well as in a broad spectrum of diseases. Although the role of lncRNAs in TGF-ß-induced epithelial-to-mesenchymal transition (EMT) has been well established, little is known about the role of lncRNAs as immediate-early regulators of EMT. Here lnc-Spry1 is identified as an immediate-early regulator of EMT that is downregulated by TGF-ß. It is also found that knockdown of lnc-Spry1 promotes a mesenchymal-like phenotype and results in increased cell migration and invasion. In addition, it is shown that lnc-Spry1 depletion preferentially affects the expression of TGF-ß-regulated gene targets. Moreover, lnc-Spry1 associates with U2AF65 splicing factor, suggesting a role in alternative splicing. Depletion of lnc-Spry1 induces, as TGF-ß, isoform switching of fibroblast growth factor receptors, resulting in FGF-2-sensitive cells. Taken together, these results show that lnc-Spry1 could act as an early mediator of TGF-ß signaling and reveal different roles for a lncRNA in modulating transcriptional and posttranscriptional gene expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas de Membrana/genética , Fosfoproteínas/genética , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/genética , Transcrição Gênica , Fator de Crescimento Transformador beta/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fosfoproteínas/metabolismo , RNA Longo não Codificante/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
8.
RNA ; 19(12): 1711-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24129493

RESUMO

MicroRNAs (miRNAs) have been widely studied in order to elucidate their biological functions. MicroRNA microarrays or miRNA overexpression libraries generated by synthesis and cloning of individual miRNAs have been used to study their different roles. In this work, we have developed a novel methodology to express mature miRNAs and other small RNAs from a double convergent RNA polymerase III promoter. We show that the generated miRNAs function similarly to those processed from primary transcripts or pri-miRNAs. This system allowed us to produce a lentiviral library expressing the whole population of small RNAs present in a metastatic cell line. A functional screening using this library led to the identification of hsa-miR-30b and hsa-miR-30c as negative regulators of cell death induced by loss of attachment (anoikis). Importantly, we demonstrated that the acquisition of anoikis resistance via these miRNAs is achieved through down-regulation of caspase 3 expression. Moreover, overexpression of these miRNAs resulted in a decrease of other types of caspase 3-dependent cell death and enhanced the survival of MCF10A acinar cells in morphogenesis assays, suggesting a putative role as oncomirs. In summary, this novel methodology provides a powerful and effective way for identifying novel small RNAs involved in a particular biological process.


Assuntos
Anoikis/genética , Caspase 3/genética , MicroRNAs/genética , Regiões 3' não Traduzidas , Sequência de Bases , Sítios de Ligação , Caspase 3/metabolismo , Técnicas de Cultura de Células , Forma Celular , Repressão Enzimática , Feminino , Expressão Gênica , Biblioteca Gênica , Células HCT116 , Células HEK293 , Humanos , Glândulas Mamárias Humanas/citologia , MicroRNAs/metabolismo , Morfogênese , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...